

[image: _images/logo.png]

pylightxl
pypi [https://pypi.org/project/pylightxl/] | github [https://github.com/PydPiper/pylightxl]

Welcome to pylightxl documentation

A light weight, zero dependency (only standard libs used), to the point (no bells and whistles) Microsoft Excel
reader/writer python 2.7.18 - 3+ library. Although there are
several excellent read/write options out there (python-excel.org [https://www.python-excel.org/] or
excelpython.org [https://www.excelpython.org/]) pylightxl focused on the following key features:

	Zero non-standard library dependencies!

	No compatibility/version control issues.

	Python2.7.18 to Python3+ support for life!

	Don’t worry about which python version you are using, pylightxl will support it for life

	Light-weight single source code file

	Want your project remain truly dependent-less? Copy the single source file into your project without any extra
dependency issues or setup.

	Do you struggle with other libraries weighing your projects down due to their very large size? Pylightxl’s
single source file size and zero dependency will not weight your project down (preferable for django apps)

	Do you struggle with pyinstaller or other exe wrappers failing to build or building to very large
packages? Pylightxl will not cause any build errors and will not add to your build size since it has zero
dependencies and a small lib size.

	Do you struggle with download restrictions at your company? Copy the entire pylightxl source from 1 single file
and use it in your project.

	100% test-driven development for highest reliability/maintainability that aims for 100% coverage on all supported versions

	Pylightxl aims to test all of its features, however unforeseen edge cases can occur when receiving excel files
created by non-microsoft excel. We actively monitor issues to add support for these edge cases should they arise.

	API aimed to be user friendly and intuitive and well documented. Structure: database > worksheet > indexing

	db.ws('Sheet1').index(row=1,col=2) or db.ws('Sheet1').address(address='B1')

	db.ws('Sheet1').row(1) or db.ws('Sheet1').col(1)

High-Level Feature Summary

	Reader

	supports Microsoft Excel 2004+ files (.xlsx, .xlsm) and .csv files

	read files via str path, pathlib path or file objects

	read all or selective sheets

	read type converted cell value (string, int, float), formula, comments, and named ranges

	Database

	call cell value by row/col ID, excel address, or range

	call an entire row/col or a semi-structured table based on user-defined headers

	Writer

	write to new excel file (write excel files without having excel on your machine)

	write to existing excel files (see limitations below)

Limitations

Although every effort was made to support a variety of users, the following limitations should be read carefully:

	Does not support .xls files (Microsoft Excel 2003 and older files)

	Writer does not support anything other than cell data (no graphs, images, macros, formatting)

	Does not support worksheet cell data more than 536,870,912 cells (32-bit list limitation), please use 64-bit if
more data storage is required.

	1. Installation
	1.1. pip install via pypi

	1.2. pip install via github

	1.3. Git Clone

	1.4. Download Source Files

	1.5. Copy Source Files

	2. Quick Start Guide
	2.1. Read/Write CSV File

	2.2. Read Excel File

	2.3. Access Worksheet and Cell Data

	2.4. Read Semi-Structured Data

	2.5. Write out a pylightxl.Database as an excel file

	2.6. Write a new excel file from python data

	3. Source Code Documentation
	3.1. readxl

	3.2. writexl

	3.3. database

	4. Example Solutions
	4.1. Reading Semi Structured data

	5. Revision Log
	5.1. pypi version 1.61

	5.2. pypi version 1.60

	5.3. pypi version 1.59

	5.4. pypi version 1.58

	5.5. pypi version 1.57

	5.6. pypi version 1.56

	5.7. pypi version 1.55

	5.8. pypi version 1.54

	5.9. pypi version 1.53

	5.10. pypi version 1.52

	5.11. pypi version 1.51

	5.12. pypi version 1.50

	5.13. pypi version 1.49

	5.14. pypi version 1.48

	5.15. pypi version 1.47

	5.16. pypi version 1.46

	5.17. pypi version 1.45

	5.18. pypi version 1.44

	5.19. pypi version 1.43

	5.20. pypi version 1.42

	5.21. pypi version 1.41

	5.22. pypi version 1.3

	5.23. pypi version 1.2

	5.24. pypi version 1.1

	6. License

	7. Contributor Code of Conduct

Support Content Creator

If you have enjoy using this library please consider supporting it by one or more of the following ways:

	Star us on github! Github [https://github.com/PydPiper/pylightxl]

	Sponsor via Tidelift [https://tidelift.com/]

	Sponsor via Patreon [https://www.patreon.com/pylightxl]

1. Installation

There are several ways to use pylightxl. The easiest download is through pip however we understand that
certain workplaces may not allow externally downloaded content, therefore we made it easy to copy/paste
the source code needed to get going as well. Please see License terms of agreement: License

1.1. pip install via pypi

Download via Python Package Installer the latest official release:

pip install pylightxl

1.2. pip install via github

Download via github the latest master branch release:

pip install git+https://github.com/PydPiper/pylightxl.git

1.3. Git Clone

Download via github clone:

git clone https://github.com/PydPiper/pylightxl.git

1.4. Download Source Files

Download via github: https://github.com/PydPiper/pylightxl/archive/master.zip

1.5. Copy Source Files

Create a copy of the entire library that the user can copy directly into a project, a virtual environment,
or into the python/lib/site-packages folder for general use.

1.) Create a folder pylightxl

2.) Create the following files within the pylightxl folder:

pylightxl
 1- __init__.py
 2- pylightxl.py

3.) Populate the files with their respective source code contents:

3.1) File1: __init__.py [https://github.com/PydPiper/pylightxl/blob/master/pylightxl/__init__.py]

3.2) File2: pylightxl.py [https://github.com/PydPiper/pylightxl/blob/master/pylightxl/pylightxl.py]

2. Quick Start Guide

Get up and running in less than 5 minutes with pylightxl!

[image: _images/readme_demo.gif]

2.1. Read/Write CSV File

Read a csv file with contents:

import pylightxl as xl

set the delimiter of the CSV to be the value of your choosing
set the default worksheet to write the read in CSV data to
db = xl.readcsv(fn='input.csv', delimiter='/', ws='sh2')

make modifications to it then,
now write it back out as a csv; or as an excel file, see xl.writexl()
xl.writecsv(db=db, fn='new.csv', ws=('sh2'), delimiter=',')

2.2. Read Excel File

import pylightxl as xl

readxl returns a pylightxl database that holds all worksheets and its data
db = xl.readxl(fn='folder1/folder2/excelfile.xlsx')

pylightxl also supports pathlib as well
my_pathlib = pathlib.Path('folder1/folder2/excelfile.xlsx')
db = xl.readxl(my_pathlib)

pylightxl also supports file-like objects for django users
with open('excelfile.xlsx', 'rb') as f:
 db = xl.readxl(f)

read only selective sheetnames
db = xl.readxl(fn='folder1/folder2/excelfile.xlsx', ws=('Sheet1','Sheet3'))

return all sheetnames
db.ws_names
>>> ['Sheet1', 'Sheet3']

2.3. Access Worksheet and Cell Data

The following example assumes excelfile.xlsx contains a worksheet named Sheet1 and it has the
following cell content:

	
	A

	B

	C

	1

	10

	20

	

	2

	
	30

	40

2.3.1. Via Cell Address

db.ws(ws='Sheet1').address(address='A1')
>>> 10
access the cell's formula (if there is one)
db.ws(ws='Sheet1').address(address='A1', output='f')
>>> ''
access the cell's comment (if there is one)
db.ws(ws='Sheet1').address(address='A1', output='c')
>>> 'this is a comment on cell A1!'
note index a empty cell will return an empty string
db.ws(ws='Sheet1').address(address='A100')
>>> ''
however default empty value can be overwritten for each worksheet
db.ws(ws='Sheet1').set_emptycell(val=0)
db.ws(ws='Sheet1').address(address='A100')
>>> 0

2.3.2. Via Cell Index

db.ws(ws='Sheet1').index(row=1, col=2)
>>> 20
access the cell's formula (if there is one)
db.ws(ws='Sheet1').index(row=1, col=2, output='f')
>>> '=A1+10'
note index a empty cell will return an empty string
db.ws(ws='Sheet1').index(row=100, col=1)
>>> ''
however default empty value can be overwritten for each worksheet
db.ws(ws='Sheet1').set_emptycell(val=0)
db.ws(ws='Sheet1').index(row=100, col=1)
>>> 0

2.3.3. Via Cell Range

db.ws(ws='Sheet1').range(address='A1')
>>> 10
db.ws(ws='Sheet1').range(address='A1:C2')
>>> [[10, 20, ''], ['', 30, 40]]
get the range's formulas
db.ws(ws='Sheet1').range(address='A1:B1', output='f')
>>> [['=10', '=A1+10']]
update a range with a single value
db.ws(ws='Sheet1').update_range(address='A1:B1', val=10)

2.3.4. Get entire row or column

db.ws(ws='Sheet1').row(row=1)
>>> [10,20,'']

db.ws(ws='Sheet1').col(col=1)
>>> [10,'']

2.3.5. Iterate through rows/cols

for row in db.ws(ws='Sheet1').rows:
 print(row)

>>> [10,20,'']
>>> ['',30,40]

for col in db.ws(ws='Sheet1').cols:
 print(col)

>>> [10,'']
>>> [20,30]
>>> ['',40]

2.3.6. Update Cell Value

db.ws(ws='Sheet1').address(address='A1')
>>> 10
db.ws(ws='Sheet1').update_address(address='A1', val=100)
db.ws(ws='Sheet1').address(address='A1')
>>> 100

db.ws(ws='Sheet1').update_index(row=1, col=1, val=10)
db.ws(ws='Sheet1').index(row=1, col=1)
>>> 10

2.3.7. Update Cell Formula

Same as update cell value except the entry must begin with a equal sign “=”

Note

updating a cell formula will clear the previously read in cell value. Formulas will
not calculate their cell value until the excel file is opened.

db.ws(ws='Sheet1').update_address(address='A1', val='=B1+100')
db.ws(ws='Sheet1').update_index(row=1, col=1, val='=B1+100')

2.3.8. Get Named Ranges

define a named range
db.add_nr(name='Table1', ws='Sheet1', address='A1:B2')
get the contents of a named ranges
db.nr(name='Table1')
>>> [[10, 20], ['', 30]]
find the location of a named range
db.nr_loc(name='Table1')
>>> ['Sheet1','A1:B2']
update the value of a named range
db.update_nr(name='Table1', val=10)
see all existing named ranges
db.nr_names
>>> {'Table1': 'Sheet1!A1:B2'}
remove a named range
db.remove_nr(name='Table1')

2.3.9. Get row/col based on key-value

Note: key is type sensitive

lets say we would like to return the column that has a cell value = 20 in row=1
db.ws(ws='Sheet1').keycol(key=20, keyindex=1)
>>> [20,30]

we can also specify a custom keyindex (not just row=1), note that we now are matched based on row=2
db.ws(ws='Sheet1').keycol(key=30, keyindex=2)
>>> [20,30]

similarly done for keyrow with keyindex=1 (look fora match in col=1)
db.ws(ws='Sheet1').keyrow(key='', keyindex=1)
>>> ['',30,40]

2.4. Read Semi-Structured Data

[image: _images/ex_readsemistrdata.png]

	note that ssd function takes any key-word argument as your KEYROWS/KEYCOLS flag

	multiple tables are read the same way as you would read a book. Top left-to-right, then down

import pylightxl
db = pylightxl.readxl(fn='Book1.xlsx')

request a semi-structured data (ssd) output
ssd = db.ws(ws='Sheet1').ssd(keycols="KEYCOLS", keyrows="KEYROWS")

ssd[0]
>>> {'keyrows': ['r1', 'r2', 'r3'], 'keycols': ['c1', 'c2', 'c3'], 'data': [[1, 2, 3], [4, '', 6], [7, 8, 9]]}
ssd[1]
>>> {'keyrows': ['rr1', 'rr2', 'rr3', 'rr4'], 'keycols': ['cc1', 'cc2', 'cc3'], 'data': [[10, 20, 30], [40, 50, 60], [70, 80, 90], [100, 110, 120]]}

2.5. Write out a pylightxl.Database as an excel file

Pylightxl support excel writing without having excel installed on the machine. However it is not without
its limitations. The writer only supports cell data writing (ie.: does not support graphs, formatting, images,
macros, etc) simply just strings/numbers/equations in cells.

Note that equations typed by the user will not calculate for its value until the excel sheet is opened in excel.

import pylightxl as xl

read in an existing worksheet and change values of its cells (same worksheet as above)
db = xl.readxl(fn='excelfile.xlsx')
overwrite existing number value
db.ws(ws='Sheet1').index(row=1, col=1)
>>> 10
db.ws(ws='Sheet1').update_index(row=1, col=1, val=100)
db.ws(ws='Sheet1').index(row=1, col=1)
>>> 100
write text
db.ws(ws='Sheet1').update_index(row=1, col=2, val='twenty')
write equations
db.ws(ws='Sheet1').update_address(address='A3', val='=A1')

xl.writexl(db=db, fn='updated.xlsx')

2.6. Write a new excel file from python data

For new python data that did not come from an existing excel speadsheet.

import pylightxl as xl

take this list for example as our input data that we want to put in column A
mydata = [10,20,30,40]

create a blank db
db = xl.Database()

add a blank worksheet to the db
db.add_ws(ws="Sheet1")

loop to add our data to the worksheet
for row_id, data in enumerate(mydata, start=1)
 db.ws(ws="Sheet1").update_index(row=row_id, col=1, val=data)

write out the db
xl.writexl(db=db, fn="output.xlsx")

3. Source Code Documentation

	3.1. readxl

	3.2. writexl

	3.3. database
	3.3.1. Database Class

	3.3.2. Worksheet Class

	3.3.3. Support Functions

3.1. readxl

	
pylightxl.pylightxl.readxl(fn, ws=None)

	Reads an xlsx or xlsm file and returns a pylightxl database

	Parameters

	
	fn (Union[str, pathlib.Path]) – Excel file path, also supports Pathlib.Path object, as well as file-like object from with/open

	ws (Union[str,List[str]], optional) – sheetnames to read into the database, if not specified - all sheets are read
entry support single ws name (ex: ws=’sh1’) or multi (ex: ws=[‘sh1’, ‘sh2’]), defaults to None

	Returns

	pylightxl Database

	Return type

	Database

3.2. writexl

	
pylightxl.pylightxl.writexl(db, fn)

	Writes an excel file from pylightxl.Database

	Parameters

	
	db (Database) – database contains sheetnames, and their data

	fn (Union[str, pathlib.path]) – file output path

3.3. database

3.3.1. Database Class

	
class pylightxl.pylightxl.Database

	
	
add_nr(name, ws, address)

	Add a NamedRange to the database. There can not be duplicate name or addresses. A named range
that overlaps either the name or address will overwrite the database’s existing NamedRange

	Parameters

	
	name (str) – NamedRange name

	ws (str) – worksheet name

	address (str) – range of address (single cell ex: “A1”, range ex: “A1:B4”)

	
add_ws(ws, data=None)

	Logs worksheet name and its data in the database

	Parameters

	
	ws (str) – worksheet name

	data (dict, optional) – dictionary of worksheet cell values (ex: {‘A1’: {‘v’:10,’f’:’’,’s’:’’, ‘c’: ‘’}, ‘A2’: {‘v’:20,’f’:’’,’s’:’’, ‘c’: ‘’}}), defaults to None

	
nr(name, formula=False, output='v')

	Returns the contents of a name range in a nest list form [row][col]

	Parameters

	
	name (str) – NamedRange name

	formula (bool, optional) – flag to return the formula of this cell, defaults to False

	output (str, optional) – output request “v” for value, “f” for formula, “c” for comment, defaults to ‘v’

	Returns

	nest list form [row][col]

	Return type

	List[list]

	
nr_loc(name)

	Returns the worksheet and address loction of a named range

	Parameters

	name (str) – NamedRange name

	Returns

	[worksheet, address]

	Return type

	List[str]

	
nr_names

	Returns the dictionary of named ranges ex: {unique_name: unique_address, …}

	Returns

	{unique_name: unique_address, …}

	Return type

	Dict[str, str]

	
remove_nr(name)

	Removes a Named Range from the database

	Parameters

	name (str) – NamedRange name

	
remove_ws(ws)

	Removes a worksheet and its data from the database

	Parameters

	ws (str) – worksheet name

	
rename_ws(old, new)

	Renames an existing worksheet. Caution, renaming to an existing new worksheet name will overwrite

	Parameters

	
	old (str) – old name

	new (str) – new name

	
set_emptycell(val)

	Custom definition for how pylightxl returns an empty cell

	Parameters

	val (Union[str,int,float]) – (default=’’) empty cell value

	
update_nr(name, val)

	Updates a NamedRange with a single value. Raises UserWarning if name not in workbook.

	Parameters

	
	name (str) – NamedRange name

	val (Union[int,float,str]) – cell value; equations are string and must being with “=”

	
ws(ws)

	Indexes worksheets within the database

	Parameters

	ws (str) – worksheet name

	Returns

	pylightxl.Database.Worksheet class object

	Return type

	Worksheet

	
ws_names

	Returns a list of database stored worksheet names

	Returns

	list of worksheet names

	Return type

	List[str]

3.3.2. Worksheet Class

	
class pylightxl.pylightxl.Worksheet(data=None)

	
	
address(address, formula=False, output='v')

	Takes an excel address and returns the worksheet stored value

	Parameters

	
	address (str) – Excel address (ex: “A1”)

	formula (bool, optional) – flag to return the formula of this cell, defaults to False

	output (str, optional) – output request “v” for value, “f” for formula, “c” for comment, defaults to ‘v’

	Returns

	cell value

	Return type

	Union[int, float, str, bool]

	
col(col, formula=False, output='v')

	Takes a col index input and returns a list of cell data

	Parameters

	
	col (int) – col index (start at 1 that corresponds to column “A”)

	formula (bool, optional) – flag to return the formula of this cell, defaults to False

	output (str, optional) – output request “v” for value, “f” for formula, “c” for comment, defaults to ‘v’

	Returns

	list of cell data

	Return type

	List[Union[int, float, str, bool]]

	
cols

	Returns a list of cols that can be iterated through

	Returns

	list of cols-lists (ex: [[11,21],[12,22],[13,23]] for 2 rows with 3 columns of data

	Return type

	Iterable[List[Union[int, float, str, bool]]]

	
index(row, col, formula=False, output='v')

	Takes an excel row and col starting at index 1 and returns the worksheet stored value

	Parameters

	
	row (int) – row index (starting at 1)

	col (int) – col index (start at 1 that corresponds to column “A”)

	formula (bool, optional) – flag to return the formula of this cell, defaults to False

	output (str, optional) – output request “v” for value, “f” for formula, “c” for comment, defaults to ‘v’

	Returns

	cell value

	Return type

	Union[int, float, str, bool]

	
keycol(key, keyindex=1)

	Takes a column key value (value of any cell within keyindex row) and returns the entire column,
no match returns an empty list

	Parameters

	
	key (Union[str,int,float,bool]) – any cell value within keyindex row (type sensitive)

	keyindex (int, optional) – option keyrow override. Must be >0 and smaller than worksheet size, defaults to 1

	Returns

	list of the entire matched key column data (only first match is returned)

	Return type

	List[Union[str,int,float,bool]]

	
keyrow(key, keyindex=1)

	Takes a row key value (value of any cell within keyindex col) and returns the entire row,
no match returns an empty list

	Parameters

	
	key (Union[str,int,float,bool]) – any cell value within keyindex col (type sensitive)

	keyindex (int, optional) – option keyrow override. Must be >0 and smaller than worksheet size, defaults to 1

	Returns

	list of the entire matched key row data (only first match is returned)

	Return type

	List[Union[str,int,float,bool]]

	
range(address, formula=False, output='v')

	Takes a range (ex: “A1:A2”) and returns a nested list [row][col]

	Parameters

	
	address (str) – cell range (ex: “A1:A2”, or “A1”)

	formula (bool, optional) – returns the values if false, or formulas if true of cells, defaults to False

	output (str, optional) – output request “v” for value, “f” for formula, “c” for comment, defaults to ‘v’

	Returns

	nested list [row][col] regardless if range is a single cell or a range

	Return type

	type

	
row(row, formula=False, output='v')

	Takes a row index input and returns a list of cell data

	Parameters

	
	row (int) – row index (starting at 1)

	formula (bool, optional) – flag to return the formula of this cell, defaults to False

	output (str, optional) – output request “v” for value, “f” for formula, “c” for comment, defaults to ‘v’

	Returns

	list of cell data

	Return type

	List[Union[int, float, str, bool]]

	
rows

	Returns a list of rows that can be iterated through

	Returns

	list of rows-lists (ex: [[11,12,13],[21,22,23]] for 2 rows with 3 columns of data

	Return type

	Iterable[List[Union[int, float, str, bool]]]

	
set_emptycell(val)

	Custom definition for how pylightxl returns an empty cell

	Parameters

	val (Union[int, float, str]) – (default=’’) empty cell value

	
size

	Returns the size of the worksheet (row/col)

	Returns

	list of [maxrow, maxcol]

	Return type

	List[int]

	
ssd(keyrows='KEYROWS', keycols='KEYCOLS')

	Runs through the worksheet and looks for “KEYROWS” and “KEYCOLS” flags in each cell to identify
the start of a semi-structured data. A data table is read until an empty header is
found by row or column. The search supports multiple tables.

	Parameters

	
	keyrows (str, optional) – a flag to indicate the start of keyrow’s
cells below are read until an empty cell is reached, defaults to ‘KEYROWS’

	keycols (str, optional) – a flag to indicate the start of keycol’s
cells to the right are read until an empty cell is reached, defaults to ‘KEYCOLS’

	Returns

	list of data dict in the form of [{‘keyrows’: [], ‘keycols’: [], ‘data’: [[], …]}, {…},]

	Return type

	List[Dict[str,list]]

	
update_address(address, val)

	Update worksheet data via address

	Parameters

	
	address (str) – excel address (ex: “A1”)

	val (Union[int, float, str, bool]) – cell value; equations are strings and must begin with “=”

	
update_index(row, col, val)

	Update worksheet data via index

	Parameters

	
	row (int) – row index

	col (int) – column index

	val (Union[int, float, str, bool]) – cell value; equations are strings and must begin with “=”

	
update_range(address, val)

	Update worksheet data via address range with a single value

	Parameters

	
	address (str) – excel address (ex: “A1:B3”)

	val (Union[int, float, str, bool]) – cell value; equations are strings and must begin with “=”

3.3.3. Support Functions

	
pylightxl.pylightxl.utility_address2index(address)

	Convert excel address to row/col index

	Parameters

	address (str) – Excel address (ex: “A1”)

	Returns

	list of [row, col]

	Return type

	List[int]

	
pylightxl.pylightxl.utility_index2address(row, col)

	Converts index row/col to excel address

	Parameters

	
	row (int) – row index (starting at 1)

	col (int) – col index (start at 1 that corresponds to column “A”)

	Returns

	str excel address

	Return type

	str

	
pylightxl.pylightxl.utility_columnletter2num(text)

	Takes excel column header string and returns the equivalent column count

	Parameters

	text (str) – excel column (ex: ‘AAA’ will return 703)

	Returns

	int of column count

	Return type

	int

	
pylightxl.pylightxl.utility_num2columnletters(num)

	Takes a column number and converts it to the equivalent excel column letters

	Parameters

	num (int) – column number

	Returns

	excel column letters

	Return type

	str

4. Example Solutions

4.1. Reading Semi Structured data

	Question posted on stackoverflow [https://stackoverflow.com/questions/59533824/python-extract-data-from-a-semi-structured-xlsx-file/59534919#59534919]

	Problem: read groups of 2D data from a single sheet that can begin at any row/col and has any
number of rows/columns per data group, see figure below.

[image: _images/ex_readsemistrdata.png]

	Solution: note that ssd function takes any key-word argument as your KEYROWS/KEYCOLS flag and
multiple tables are read the same way as you would read a book. Top left-to-right, then down.

import pylightxl
db = pylightxl.readxl('Book1.xlsx')

request a semi-structured data (ssd) output
ssd = db.ws('Sheet1').ssd(keycols="KEYCOLS", keyrows="KEYROWS")

ssd[0]
>>> {'keyrows': ['r1', 'r2', 'r3'], 'keycols': ['c1', 'c2', 'c3'], 'data': [[1, 2, 3], [4, '', 6], [7, 8, 9]]}
ssd[1]
>>> {'keyrows': ['rr1', 'rr2', 'rr3', 'rr4'], 'keycols': ['cc1', 'cc2', 'cc3'], 'data': [[10, 20, 30], [40, 50, 60], [70, 80, 90], [100, 110, 120]]}

5. Revision Log

5.1. pypi version 1.61

	bug-fix: occasionally a <definedName> tag would case pylightxl to add duplicate of the same worksheet, see issue #75 [https://github.com/PydPiper/pylightxl/issues/75]

	update: updated date handling (code cleanup)

	added feature: added python2 compatible typing to the library

	added feature: added io.StringIO support to readcsv

5.2. pypi version 1.60

	added feature: ability to update NamedRanges wb.update_nr(name, val), see issue #72 [https://github.com/PydPiper/pylightxl/issues/72]

	added feature: ability to find where a NamedRange is wb.nr_loc(name)

	added feature: ability to fill a range with a single value: wb.ws(‘Sheet1’).update_range(address=’A1:B3’, val=10)

	update: NamedRanges now add the worksheets if they are not already in the workbook. Note that using readxl with worksheet names specified will also ignore NamedRanges from being read in from the sheet that are not read in.

	update: updated quickstart docs with the new feature demo scripts

5.3. pypi version 1.59

	bug fix: error in printing formulas that were read in as None type, see issue #59 [https://github.com/PydPiper/pylightxl/issues/59]

	bug fix: added custom datetime and time style handling, see issue #36 [https://github.com/PydPiper/pylightxl/issues/36]

5.4. pypi version 1.58

	improvement: added support for non-standard sheet ids, see issue #55 [https://github.com/PydPiper/pylightxl/issues/55]

	improvement: added support for general IO file type inputs, see issue #57 [https://github.com/PydPiper/pylightxl/issues/57]

5.5. pypi version 1.57

	improvement: added support for non-standard sheet ids (created by 3rd party tools), see issue #53 [https://github.com/PydPiper/pylightxl/issues/53]

	improvement: added support for writing to existing sheets that contain excel customization, see issue #54 [https://github.com/PydPiper/pylightxl/issues/54]

5.6. pypi version 1.56

	imporvement: added support for non-standard excel file xml tags, see issue #44 [https://github.com/PydPiper/pylightxl/issues/44]

	bug fix: fixed keyrow bug, see issue #47 [https://github.com/PydPiper/pylightxl/issues/47]

	bug fix: addressed csv writing issue related to cells that contain ‘n’ that previous started a new row. New version replaces ‘n’ with ‘’, see issue #49 [https://github.com/PydPiper/pylightxl/issues/49]

	bug fix: newly written workbooks written by pylightxl could not create new worksheets within excel after opening. The fix was to removed sheetView xml tag, see issue #50 [https://github.com/PydPiper/pylightxl/issues/50]

	improvement: added encoding=’utf-8’ to write altworksheets to support chinese encoding error, see issue #51 [https://github.com/PydPiper/pylightxl/issues/51]

5.7. pypi version 1.55

	added comment parsing, see issue #41 [https://github.com/PydPiper/pylightxl/issues/41]

	DEPRECATION WARNING: all indexing method that use “formula” as an argument will be replaced
with “output” in future version. Please update your codebase to use “output” instead of “formula”.
This was done to simplify indexing the value (output='v'), the formula (output='f') or the
comment (output='c').

	added file stream reading for readxl that now supports with block for reading. See issue #25 [https://github.com/PydPiper/pylightxl/issues/25]

5.8. pypi version 1.54

	added handling for datetime parsing

5.9. pypi version 1.53

	bug fix: writing to existing file previously would only write to the current working directory, it
now can handle subdirs. In addition inadvertently discovered a bug in python source code ElementTree.iterparse
where source passed as a string was not closing the file properly. We submitted a issue to python issue tracker.

5.10. pypi version 1.52

	updated reading error’ed cells “#N/A”

	updated workbook indexing bug from program generated workbooks that did not index from 1

5.11. pypi version 1.51

	license update within setup.py

5.12. pypi version 1.50

	hot-fix: added python2 support for encoding with cgi instead of html

5.13. pypi version 1.49

	bug-fix: updated encoding for string cells that contained xml-like data (ex: cell A1 “<cell content>”)

5.14. pypi version 1.48

	add feature to writecsv to be able to handle pathlib object and io.StreamIO object

	refactored readxl to remove regex, now readxl is all cElementTree

	refactored readxl/writexl to able to handle excel files written by openpyxl that is generated
differently than how excel write files.

5.15. pypi version 1.47

	added new function: db.nr('table1') returns the contents of named range “table1”

	added new function: db.ws('Sheet1').range('A1:C3') that returns the contents of a range
it also has the ability to return the formulas of the range

	updated db.ws('Sheet1').row() and db.ws('Sheet1').col() to take in a new argument formual
that returns the formulas of a row or col

	bugfix: write to existing without named ranges was throwing a “repair” error. Fixed typo on xml for it
and added unit tests to capture it

	added new function: xl.readcsv(fn, delimiter, ws) to read csv files and create a pylightxl db out
of it (type converted)

	added new function: xl.writecsv(db, fn, ws, delimiter) to write out a pylightxl worksheet as a csv

5.16. pypi version 1.46

	bug fix: added ability to input an empty string into the cell update functions
(previously entering val=’’) threw and error

5.17. pypi version 1.45

	added support for cell values that have multiple formats within a single cell.
previous versions did not support this functionality since it is logged differently in sharedString.xml

	added support for updating formulas and viewing them:

	view formula: db.ws('Sheet1').address('A1', formula=True)

	edit formula: db.ws('Sheet1').update_address('A1', val='=A1+10')

	updated the following function arguments to drive commonality:

	was: readxl(fn, sheetnames) new: readxl(fn, ws)

	was: writexl(db, path) new: writexl(db, fn)

	was: db.ws(sheetname) new: db.ws(ws)

	was: db.add_ws(sheetname, data) new: db.add_ws(ws, data)

	added new feature to be able to read-in NamedRanges, store it in the Database, update it, remove it,
and write it. NamedRanges were integrated with existing function to handle semi-structured-data

	db.add_nr(name'range1', ws='sheet1', address='A1:C2')

	db.remove_nr(name='range1')

	db.nr_names

	add feature to remove worksheet: db.remove_ws(ws='Sheet1')

	add feature to rename worksheet: db.rename_ws(old='sh1', new='sh2')

	added a cleanup function upon writing to delete _pylightxl_ temp folder in case an error left them

	added feature to write to file that is open by excel by appending a “new_” tag to the file name and
a warning message that file is opened by excel so a file was saved as “new_” + filename

5.18. pypi version 1.44

	bug fix: accounted for num2letter roll-over issue

	new feature: added a pylightxl native function for handling semi-structured data

5.19. pypi version 1.43

	bug fix: accounted for reading error’ed out cell “#N/A”

	bug fix: accounted for bool TRUE/FALSE cell values not registering on readxl

	bug fix: accounted for edge case that was prematurely splitting cell tags <c r /> by formula closing
bracket <f />

	bug fix: accounted for cell address roll-over

5.20. pypi version 1.42

	added support for pathlib file reading

	bug fix: previous version did not handle merged cells properly

	bug fix: database updates did not update maxcol maxrow if new data addition was larger than the initial
dataset

	bug fix: writexl that use linefeeds did not read in properly into readxl (fixed regex)

	bug fix: writexl filepath issues

5.21. pypi version 1.41

	new-feature: write new excel file from pylightxl.Database

	new-feature: write to existing excel file from pylightxl.Database

	new-feature: db.update_index(row, col, val) for user defined cell values

	new-feature: db.update_address(address, val) for user defined cell values

	bug fix for reading user defined sheets

	bug fix for mis-alignment of reading user defined sheets and xml files

5.22. pypi version 1.3

	new-feature: add the ability to call rows/cols via key-value ex: db.ws('Sheet1').keycol('my column header')
will return the entire column that has ‘my column header’ in row 1

	fixed-bug: fixed leading/trailing spaced cell text values that are marked <t xml:space="preserve"> in the
sharedString.xml

5.23. pypi version 1.2

	fixed-bug: fixed Sheet number to custom Sheet name matching for 10+ sheets that were previously only sorting alphabetical
which resulted with sorting: Sheet1, Sheet10, Sheet11, Sheet2… and so on.

5.24. pypi version 1.1

	initial release

6. License

Copyright (c) 2019 Viktor Kis

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

7. Contributor Code of Conduct

Pylightxl as with many other python open source projects practices an open
and welcoming community for users and contributors. The following is our
minimum expectation:

	A diverse community is a great community, and everyone is welcomed here,
no matter the age, race, gender or background.

	Practice upmost respect for our users and maintainers. Maintainers answering issues
on github or stackoverflow should always start by thanking the individual for considering
using the tool, then begin to help them. Users, please be patient with our developers
we try to test as much we can, but there will always be edge cases - just know that we
are here to help you!

Index

 A
 | C
 | D
 | I
 | K
 | N
 | R
 | S
 | U
 | W

A

 	
 	add_nr() (pylightxl.pylightxl.Database method)

 	
 	add_ws() (pylightxl.pylightxl.Database method)

 	address() (pylightxl.pylightxl.Worksheet method)

C

 	
 	col() (pylightxl.pylightxl.Worksheet method)

 	
 	cols (pylightxl.pylightxl.Worksheet attribute)

D

 	
 	Database (class in pylightxl.pylightxl)

I

 	
 	index() (pylightxl.pylightxl.Worksheet method)

K

 	
 	keycol() (pylightxl.pylightxl.Worksheet method)

 	
 	keyrow() (pylightxl.pylightxl.Worksheet method)

N

 	
 	nr() (pylightxl.pylightxl.Database method)

 	
 	nr_loc() (pylightxl.pylightxl.Database method)

 	nr_names (pylightxl.pylightxl.Database attribute)

R

 	
 	range() (pylightxl.pylightxl.Worksheet method)

 	readxl() (in module pylightxl.pylightxl)

 	remove_nr() (pylightxl.pylightxl.Database method)

 	
 	remove_ws() (pylightxl.pylightxl.Database method)

 	rename_ws() (pylightxl.pylightxl.Database method)

 	row() (pylightxl.pylightxl.Worksheet method)

 	rows (pylightxl.pylightxl.Worksheet attribute)

S

 	
 	set_emptycell() (pylightxl.pylightxl.Database method)

 	(pylightxl.pylightxl.Worksheet method)

 	
 	size (pylightxl.pylightxl.Worksheet attribute)

 	ssd() (pylightxl.pylightxl.Worksheet method)

U

 	
 	update_address() (pylightxl.pylightxl.Worksheet method)

 	update_index() (pylightxl.pylightxl.Worksheet method)

 	update_nr() (pylightxl.pylightxl.Database method)

 	update_range() (pylightxl.pylightxl.Worksheet method)

 	
 	utility_address2index() (in module pylightxl.pylightxl)

 	utility_columnletter2num() (in module pylightxl.pylightxl)

 	utility_index2address() (in module pylightxl.pylightxl)

 	utility_num2columnletters() (in module pylightxl.pylightxl)

W

 	
 	Worksheet (class in pylightxl.pylightxl)

 	writexl() (in module pylightxl.pylightxl)

 	
 	ws() (pylightxl.pylightxl.Database method)

 	ws_names (pylightxl.pylightxl.Database attribute)

 _static/up.png

_static/awesomelist.png
Pydpiper commented on Dec 25, 2019 - edited @

pick your reaction
Repo: https://github.com/Pydiper/pylightx!

Docs: https://pylightxl.readthedocs.io
57 Os

What is this Python project? ® @ e

_images/readme_demo.gif
Excel File Python Code

>>>
>>>

ale |e >>>
>>>

10 20 >>>
30 40 o

>>>

>>>

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/ex_readsemistrdata.png
el

B

E

4 |Data Table 2

Data Table 2

[ccz

110|

[ect

10]

100|

_images/logo.png
X

_static/ex_readsemistrdata.png
el

B

E

4 |Data Table 2

Data Table 2

[ccz

110|

[ect

10]

100|

nav.xhtml

 Table of Contents

 		
 Welcome to pylightxl documentation

 		
 Installation

 		
 pip install via pypi

 		
 pip install via github

 		
 Git Clone

 		
 Download Source Files

 		
 Copy Source Files

 		
 Quick Start Guide

 		
 Read/Write CSV File

 		
 Read Excel File

 		
 Access Worksheet and Cell Data

 		
 Via Cell Address

 		
 Via Cell Index

 		
 Via Cell Range

 		
 Get entire row or column

 		
 Iterate through rows/cols

 		
 Update Cell Value

 		
 Update Cell Formula

 		
 Get Named Ranges

 		
 Get row/col based on key-value

 		
 Read Semi-Structured Data

 		
 Write out a pylightxl.Database as an excel file

 		
 Write a new excel file from python data

 		
 Source Code Documentation

 		
 readxl

 		
 writexl

 		
 database

 		
 Database Class

 		
 Worksheet Class

 		
 Support Functions

 		
 Example Solutions

 		
 Reading Semi Structured data

 		
 Revision Log

 		
 pypi version 1.61

 		
 pypi version 1.60

 		
 pypi version 1.59

 		
 pypi version 1.58

 		
 pypi version 1.57

 		
 pypi version 1.56

 		
 pypi version 1.55

 		
 pypi version 1.54

 		
 pypi version 1.53

 		
 pypi version 1.52

 		
 pypi version 1.51

 		
 pypi version 1.50

 		
 pypi version 1.49

 		
 pypi version 1.48

 		
 pypi version 1.47

 		
 pypi version 1.46

 		
 pypi version 1.45

 		
 pypi version 1.44

 		
 pypi version 1.43

 		
 pypi version 1.42

 		
 pypi version 1.41

 		
 pypi version 1.3

 		
 pypi version 1.2

 		
 pypi version 1.1

 		
 License

 		
 Contributor Code of Conduct

_static/logo.png
X

_static/minus.png

_static/file.png

_static/header_logo.gif
4
py Xl

_static/readme_demo.gif
Excel File Python Code

>>>
>>>

ale |e >>>
>>>

10 20 >>>
30 40 o

>>>

>>>

_static/readme_ex.png
Excel File Python Code

import pylightxl as x1
db = x1.readx]("myexcel.xlsx')
db.us("Sheet1').address("AL")

>> 10
& 5 © db.us(*Sheet1"). index(row=1,col=1)
10 | 20 >> 10

db.us(*Sheet1").rou(1)

>> [10, 20, *']

for row in db.us('Sheetl’). rous:
print(row)

>>> [10, 20, '']

>> [, 30, 40]

30 40

_static/plus.png

_static/up-pressed.png

